Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra. | \(-h_{6}-2h_{5}-3h_{3}-h_{2}+h_{1}\) | \(-h_{4}+2h_{3}+h_{2}\) | \(g_{12}\) | \(g_{10}\) | \(g_{19}\) | \(g_{8}\) | \(g_{9}+g_{2}\) | \(g_{4}\) | \(g_{16}\) | \(g_{17}\) | \(g_{13}\) |
weight | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{3}\) | \(2\omega_{3}\) | \(2\omega_{3}\) | \(\omega_{1}+2\omega_{3}\) | \(\omega_{2}+2\omega_{3}\) | \(4\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(0\) | \(\omega_{1}+6\psi_{1}-4\psi_{2}\) | \(\omega_{2}-6\psi_{1}+4\psi_{2}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{3}+8\psi_{1}-10\psi_{2}\) | \(2\omega_{3}\) | \(2\omega_{3}-8\psi_{1}+10\psi_{2}\) | \(\omega_{1}+2\omega_{3}-2\psi_{1}+6\psi_{2}\) | \(\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}\) | \(4\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+6\psi_{1}-4\psi_{2}} \) → (1, 0, 0, 6, -4) | \(\displaystyle V_{\omega_{2}-6\psi_{1}+4\psi_{2}} \) → (0, 1, 0, -6, 4) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0, 0, 0) | \(\displaystyle V_{2\omega_{3}+8\psi_{1}-10\psi_{2}} \) → (0, 0, 2, 8, -10) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0, 0) | \(\displaystyle V_{2\omega_{3}-8\psi_{1}+10\psi_{2}} \) → (0, 0, 2, -8, 10) | \(\displaystyle V_{\omega_{1}+2\omega_{3}-2\psi_{1}+6\psi_{2}} \) → (1, 0, 2, -2, 6) | \(\displaystyle V_{\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}} \) → (0, 1, 2, 2, -6) | \(\displaystyle V_{4\omega_{3}} \) → (0, 0, 4, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+2\omega_{3}\) \(-\omega_{1}+\omega_{2}+2\omega_{3}\) \(\omega_{1}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{3}\) \(-\omega_{2}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{2}-2\omega_{3}\) | \(\omega_{2}+2\omega_{3}\) \(\omega_{1}-\omega_{2}+2\omega_{3}\) \(\omega_{2}\) \(-\omega_{1}+2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(\omega_{2}-2\omega_{3}\) \(-\omega_{1}\) \(\omega_{1}-\omega_{2}-2\omega_{3}\) \(-\omega_{1}-2\omega_{3}\) | \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}+6\psi_{1}-4\psi_{2}\) \(-\omega_{1}+\omega_{2}+6\psi_{1}-4\psi_{2}\) \(-\omega_{2}+6\psi_{1}-4\psi_{2}\) | \(\omega_{2}-6\psi_{1}+4\psi_{2}\) \(\omega_{1}-\omega_{2}-6\psi_{1}+4\psi_{2}\) \(-\omega_{1}-6\psi_{1}+4\psi_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{3}+8\psi_{1}-10\psi_{2}\) \(8\psi_{1}-10\psi_{2}\) \(-2\omega_{3}+8\psi_{1}-10\psi_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{3}-8\psi_{1}+10\psi_{2}\) \(-8\psi_{1}+10\psi_{2}\) \(-2\omega_{3}-8\psi_{1}+10\psi_{2}\) | \(\omega_{1}+2\omega_{3}-2\psi_{1}+6\psi_{2}\) \(-\omega_{1}+\omega_{2}+2\omega_{3}-2\psi_{1}+6\psi_{2}\) \(\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-\omega_{2}+2\omega_{3}-2\psi_{1}+6\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}\) \(\omega_{1}-2\omega_{3}-2\psi_{1}+6\psi_{2}\) \(-\omega_{2}-2\psi_{1}+6\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}-2\psi_{1}+6\psi_{2}\) \(-\omega_{2}-2\omega_{3}-2\psi_{1}+6\psi_{2}\) | \(\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}\) \(\omega_{1}-\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}\) \(\omega_{2}+2\psi_{1}-6\psi_{2}\) \(-\omega_{1}+2\omega_{3}+2\psi_{1}-6\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{1}-6\psi_{2}\) \(\omega_{2}-2\omega_{3}+2\psi_{1}-6\psi_{2}\) \(-\omega_{1}+2\psi_{1}-6\psi_{2}\) \(\omega_{1}-\omega_{2}-2\omega_{3}+2\psi_{1}-6\psi_{2}\) \(-\omega_{1}-2\omega_{3}+2\psi_{1}-6\psi_{2}\) | \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+6\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+6\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{2}+6\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-6\psi_{1}+4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-6\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}+8\psi_{1}-10\psi_{2}}\oplus M_{8\psi_{1}-10\psi_{2}}\oplus M_{-2\omega_{3}+8\psi_{1}-10\psi_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{3}-8\psi_{1}+10\psi_{2}}\oplus M_{-8\psi_{1}+10\psi_{2}}\oplus M_{-2\omega_{3}-8\psi_{1}+10\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\omega_{3}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\omega_{3}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}+2\omega_{3}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-2\omega_{3}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}-2\omega_{3}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{1}+2\omega_{3}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{2}-2\omega_{3}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\omega_{3}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{1}-2\omega_{3}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{\omega_{1}+6\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+6\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{2}+6\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-6\psi_{1}+4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-6\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{1}-6\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}+8\psi_{1}-10\psi_{2}}\oplus M_{8\psi_{1}-10\psi_{2}}\oplus M_{-2\omega_{3}+8\psi_{1}-10\psi_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{3}-8\psi_{1}+10\psi_{2}}\oplus M_{-8\psi_{1}+10\psi_{2}}\oplus M_{-2\omega_{3}-8\psi_{1}+10\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\omega_{3}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\omega_{3}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}+2\omega_{3}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-2\omega_{3}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}-2\psi_{1}+6\psi_{2}} \oplus M_{-\omega_{2}-2\omega_{3}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\omega_{3}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{1}+2\omega_{3}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{2}-2\omega_{3}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\omega_{3}+2\psi_{1}-6\psi_{2}} \oplus M_{-\omega_{1}-2\omega_{3}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\) |